Wilson Area School District
Planned Course Guide

Title of planned course: Introduction to Physical Science

Subject Area: Chemistry / Physics

Grade Level: 10 - 12

Course Description: This course is designed to be offered in conjunction with the Biology Remediation class to afford the opportunity for a remediating student to earn a full science credit for the year while also providing the necessary fundamentals and content to prepare them for chemistry and physics coursework which will be needed in subsequent years. The course will integrate core concepts integral to the physical sciences such as measurement, atomic structure, forces, and motion. Exposure to the laboratory and application of mathematics to our understanding of the natural world will also be emphasized.

Time/Credit for this Course: 0.5 years / 0.5 credits

Curriculum Writing Committee: Stewart, Evans, Browne, Grabowski, Johnson
Curriculum Map

Month 1: Evolution of science and our understanding of the world.

Month 2: Measurement of physical and chemical properties

Month 3: Atomic Structure

Month 4/5: Forces and Motion
Wilson Area School District
Planned Course Materials

Course Title: Introduction to Physical Science

Supplemental Books: The Martian

Teacher Resources: Laboratory Materials/Teacher Prepared Worksheets
Curriculum Scope & Sequence

Planned Course: Introduction to Physical Science

Unit 1: Evolution of Science and Understanding

Time Frame: 3 weeks

State Standards: 3.3.10 B1; 3.3.10 B3; 3.4.10 B4; 3.2.10.A6

Anchor or adopted anchor: CHEM.A.1.1; CHEM.A.1.2; CHEM.A.1.2.1; CHEM.A.1.2.2; CHEM.A.1.2.3; CHEM.A.1.2.4; CHEM.A.1.2.5

Essential Content/Objectives: At the end of the unit, students will be able to:
- Compare the scientific method to that of philosophy and mathematics
- Create a timeline of our ever changing conception of the structure of the universe - what is matter, what is energy, basic universal laws
- Describe the difference between qualitative and quantitative measurements
- Describe and apply the scientific method and use it to write laboratory reports
- Describe the difference between chemistry and physics and how these physical sciences differ from the life sciences and how they interconnect

Core Activities: Students will complete/participate in the following:
- Direct Instruction Q/A
- Measuring in labs to demonstrate quantitative and qualitative observations.
- Student homework and classwork
- Creation of Lab Reports
- Background reading in “The Martian”

Extensions:
- Enrichment Questions for Advanced Students

Remediation:
- School developed and industry developed resource videos

Instructional Methods:
- Direct Instruction
- Teacher facilitated student learning
- Laboratory Work

Materials & Resources:
- Laboratory Materials
- The Martian Novel

Assessments:
- Quiz a day and Unit Exam
Curriculum Scope & Sequence

Planned Course: Introduction to Physical Science

Unit 2: Measurement

Time frame: 4 weeks

State Standards: 3.2.10.A.6; 3.2.C.A3

Anchor(s) or adopted anchor: CHEM.A.1.1.3; CHEM.A.1.1.3

Essential content/objectives: At end of the unit, students will be able to:
- Understand the importance of units in scientific work
- Record data with the correct significant figures
- Identify the correct laboratory equipment to measure mass, volume, temperature, velocity, atmospheric pressure, and voltage
- Distinguish between physical and chemical properties
- Identify a material based on its properties
- Group materials based on their properties
- Define terms that pertain to laws of gravity, motion, conservation of mass, and the laws of thermodynamics
- Manipulate equations that describe natural laws and use them to calculate applicable variables
- Develop comfort and mastery with using mathematics as a tool to describe natural phenomena
- Graph variables properly and determine or describe a relationship

Core Activities: Students will complete/participate in the following:
- Direct Instruction Q/A
- Measuring in labs to demonstrate gravity, conservation of mass, and laws of thermodynamics
- Student homework and classwork
- Background reading in “The Martian”

Extensions:
- Enrichment Questions for Advanced Students

Remediation:
- School developed and industry developed resource videos

Instructional Methods:
- Direct Instruction
- Teacher facilitated student learning
- Laboratory Work

Materials & Resources:
- Laboratory Materials
- The Martian Novels

Assessments:
- Quiz a day and Unit Exam
Curriculum Scope & Sequence

Planned Course: Introduction to Physical Science

Unit 3: Atomic Structure

Time frame: 4 weeks

State Standards: 3.2.10.A; 3.2.1.C.A2; 3.2.C.A1; 3.2.10.A4; 3.4.10.A

Anchor(s) or adopted anchor: CHEM.A.1.1.1; CHEM.A.1.1.4; CHEM.A.2.2.4

Essential content/objectives: At end of the unit, students will be able to:
- Describe the characteristics and support for the current quantum model of the atom
- Predict properties such as metallic character, size of radii, and reactivity based on atomic structure
- Compare and contrast the various types of matter in universe and how their differences relate to the atomic structure of the atoms from which it is composed
- Draw a proper model of the atom and energy diagram for an atom based off of the quantum model
- Describe how the principle of wavelike behavior and the interaction of matter with light has led to our understanding of matter
- Classify matter and propose methods to verify predictions.
- Group materials based on their properties

Core Activities: Students will complete/participate in the following:
- Direct Instruction Q/A
- Measuring in labs to demonstrate gravity, conservation of mass, and laws of thermodynamics
- Student homework and classwork
- Background reading in “The Martian”

Extensions:
- Enrichment Questions for Advanced Students

Remediation:
- School developed and industry developed resource videos

Instructional Methods:
- Direct Instruction
- Teacher facilitated student learning
- Laboratory Work

Materials & Resources:
- Laboratory Materials
- The Martian Novels

Assessments:
- Quiz a day and Unit Exam
Curriculum Scope & Sequence

Planned Course: Introduction to Physical Science

Unit: 4: Laws of Motion and Forces

Time frame: 4 weeks

State Standards: 3.2.10.B.1; 3.2.P.B1; 3.2.P.B6; 3.2.12.B6

Essential content/objectives: At end of the unit, students will be able to:
- Calculate the velocity of an object before/after a force is applied
- Determine quantities such as force of gravity, mass, acceleration, distance, and time using Newton’s second law
- Compare the different factors influencing law of gravitation and determine and compare gravitational force between different bodies
- Identify momentum and its conservation
- Describe the various potential forces operating on a body and the influences they have

Core Activities: Students will complete/participate in the following:
- Direct Instruction Q/A
- Measuring in labs to demonstrate gravity, conservation of mass, and laws of thermodynamics
- Student homework and classwork
- Background reading in “The Martian”

Extensions:
- Enrichment Questions for Advanced Students

Remediation:
- School developed and industry developed resource videos

Instructional Methods:
- Direct Instruction
- Teacher facilitated student learning
- Laboratory Work

Materials & Resources:
- Laboratory Materials
- The Martian Novels

Assessments:
- Quiz a day and Unit Exam